×

签到

分享到微信

打开微信,使用扫一扫进入页面后,点击右上角菜单,

点击“发送给朋友”或“分享到朋友圈”完成分享

【pytorch:yolov5x6放到星空体育容器】在修改过程中出现的问题求助 upper2023-12-21 16:33:20 回复 2 查看 使用求助 经验交流
【pytorch:yolov5x6放到星空体育容器】在修改过程中出现的问题求助

【星空体育硬件产品型号】必填*:MLU220

【使用操作系统】必填*:
例如:ubuntu

【使用驱动版本】必填*:
例如v4.20.6

【出错信息】必填*:移yolov5的时候出现警告提示

下面是我做的一些步骤(想将yolov5x6.pt移植到星空体育MLU220上)

  • 在高级的pytorch结构下先转成unzip格式(这个yolov5x6.pt是yolo官网下下载的pt文件)

  • 因为 torch 1.3 版本没有 SiLU, Hardswish, 所以我在models文件中添加实现了

把common和yolo的代码改掉了,common代码有的没用的我就删掉了,yolo的代码是将星空体育给的和yolo官网的合并了一下

下面的是yolo的代码

#基本上都是官网的代码就是在这个函数中添加了一些星空体育的代码
class Detect(nn.Module):
    stride = None  # strides computed during build
    export = False  # onnx export
    dynamic = False  # force grid reconstruction
    def __init__(self, nc=80, anchors=(), ch=()):  # detection  
        super(Detect, self).__init__()
        self.anchors_list = list(np.array(anchors).flatten())
        self.num_anchors = len(self.anchors_list)
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection  s
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        a = torch.tensor(anchors).float().view(self.nl, -1, 2)
        self.register_buffer('anchors', a)  # shape(nl,na,2)
        self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2))  # shape(nl,1,na,1,1,2)
        self.register_buffer('anchors_cp', a.clone())
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        #self.tmp_shape=[[1,255,80,64],[1,255,40,32],[1,255,20,16]]
        self.img_h = 640
        self.img_w = 640
        self.conf_thres = 0.4
        self.iou_thres = 0.5
        self.maxBoxNum = 1024
       
    def forward(self, x):
        # x = x.copy()  # for profiling
        output = []  # inference output
        self.training |= self.export
        if x[0].device.type == 'mlu':
            for i in range(self.nl):
                x[i] = self.m[i](x[i])  # conv
                y = x[i].sigmoid()
                print('y.shape: ',y.shape)
                output.append(y)
            detect_out = torch.ops.torch_mlu.yolov5_detection_output(output[0], output[1], output[2],
                                                                       self.anchors_list,self.nc, self.num_anchors,
                                                                       self.img_h, self.img_w, self.conf_thres, self.iou_thres, self.maxBoxNum)
                            #  [10, 13, 16, 30, 33, 23,30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
            return detect_out
        if x[0].device.type == 'cpu':
            z = []  # inference output
            for i in range(self.nl):
                x[i] = self.m[i](x[i])  # conv
                bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
                x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

                if not self.training:  # inference
                    if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                        self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
                    if isinstance(self, Segment):  # (boxes + masks)
                        xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
                        xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i]  # xy
                        wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i]  # wh
                        y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
                    else:  # Detect (boxes only)
                        xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
                        xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy
                        wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh
                        y = torch.cat((xy, wh, conf), 4)
                    z.append(y.view(bs, self.na * nx * ny, self.no))

            return x if self.training else (torch.cat(z, 1), ) if self.export else (torch.cat(z, 1), x)

    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        t = self.anchors[i].dtype
        shape = 1, self.na, ny, nx, 2  # grid shape
        y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
        yv, xv = torch.meshgrid(y, x)  # torch>=0.7 compatibility
        grid = torch.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5
        anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
        return grid, anchor_grid
  • _meshgrid函数因为星空体育的那个容器版本低,没有这个函数,所以我就在function下写了个这个函数

def _meshgrid(*tensors):
    if has_torch_function(tensors):
        return handle_torch_function(meshgrid, tensors, *tensors)
    if len(tensors) == 1 and isinstance(tensors[0], (list, tuple)):
        # the old interface of passing the operands as one list argument
        tensors = tensors[0]  # type: ignore
    return _VF.meshgrid(tensors)  # type: ignore

  • 然后测试了一下,能跑出结果也能画框,但是有一些警告

    image-20231221095201458.png

  • 所以想问一下需要考虑这个警告问题吗?怎么解决这个警告?还是能跑就放着他不管?

版权所有 © 2024 星空体育 备案/许可证号:京ICP备17003415号-1
关闭